
Overview of the Alpha 21164

The Alpha 21164 microprocessor is now a product of
Digital Semiconductor. The chip is the second com-
pletely new microprocessor to implement the Alpha
instruction set architecture. It was designed in Digital’s
0.5-micrometer (mm) complementary metal-oxide
semiconductor (CMOS) process. First silicon was pow-
ered on in February 1994; the part has been commer-
cially available since January 1995. At SPECint92/
SPECfp92 ratings of 345/505 (estimated), the Alpha
21164 achieved new heights of performance. 

The performance of this new implementation
results from aggressive circuit design using the latest
0.5-mm CMOS technology and significant architec-
tural improvements over the first Alpha implementa-
tion.1 The chip is designed to operate at 300 MHz, an
operating frequency 10 percent faster than the previ-
ous implementation (the DECchip 21064 chip)
would have if it were scaled into the new 0.5-mm
CMOS technology.2 Relative to the previous imple-
mentation, the key improvements in machine organi-
zation are a doubling of the superscalar dimension to
four-way superscalar instruction issue; reduction of
many operational latencies, including the latency in
the primary data cache; a memory subsystem that does
not block other operations after a cache miss; and a
large, on-chip, second-level, write-back cache. 

The 21164 microprocessor implements the Alpha
instruction set architecture. It runs existing Alpha pro-
grams without modification. It supports a 43-bit vir-
tual address and a 40-bit physical address. The page
size is 8 kilobytes (KB). 

In the following sections, we describe the five func-
tional units of the Alpha 21164 microprocessor and
relate some of the design decisions that improved the
performance of the microprocessor. First, we give an
overview of the chip’s internal organization and
pipeline layout. 

Internal Organization 
Figure 1 shows a block diagram of the chip’s five func-
tional units: the instruction unit, the integer function
unit, the floating-point unit, the memory unit, and 
the cache control and bus interface unit (called the 
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A new CMOS microprocessor, the Alpha 21164,
reaches 1,200 mips/600 MFLOPS (peak perfor-
mance). This new implementation of the Alpha
architecture achieves SPECint92/SPECfp92 
performance of 345/505 (estimated). At these
performance levels, the Alpha 21164 has
delivered the highest performance of any
commercially available microprocessor in 
the world as of January 1995. It contains 
a quad-issue, superscalar instruction unit; 
two 64-bit integer execution pipelines; two 
64-bit floating-point execution pipelines; and 
a high-performance memory subsystem with
multiprocessor-coherent write-back caches. 
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C-box). The three on-chip caches are also shown. The
instruction cache and data cache are primary, direct-
mapped caches. They are backed by the second-level
cache, which is a set-associative cache that holds
instructions and data. 

Alpha 21164 Pipeline 
The Alpha 21164 pipeline length is 7 stages for integer
execution, 9 stages for floating-point execution, and 
as many as 12 stages for on-chip memory instruction
execution. Additional stages are required for off-chip
memory instruction execution. Figure 2 depicts 
the pipeline for integer, floating-point, and memory
operations. 

Instruction Unit

The instruction unit contains an 8-KB, direct-mapped
instruction cache, an instruction prefetcher and asso-
ciated refill buffer, branch prediction logic, and an
instruction translation buffer (ITB). 

The instruction unit fetches and decodes instruc-
tions from the instruction cache and dispatches them
to the appropriate function units after resolving all
register and function-unit conflicts. It controls pro-
gram flow and all aspects of exception, trap, and inter-
rupt handling. In addition, it manages pipeline control

for the integer and floating-point units, controlling all
data bypasses and register file writes. 

The instruction cache has 32-byte blocks. The
cache tags hold virtual address information. Its tags
also support PALcode through a bit which indicates
that the tag contains a physical address. (PAL stands
for privileged architecture library and refers to physi-
cally addressed code executed in a privileged hardware
mode that implements an architecturally defined inter-
face between the operating system and the hardware.) 

Instruction Pipeline 
The first four pipeline stages of the Alpha 21164
microprocessor are the instruction unit pipeline stages,
stage 0 through stage 3. The logic in the stage before
stage 0 is normally considered to operate in stage 1 of
the pipeline. In that stage, the new instruction cache
address is calculated either by incrementing the previ-
ous address or by selecting a new address in response to
a predicted or actual flow change operation. 

During stage 0, the 8-KB instruction cache is
accessed. It returns a naturally aligned block of four
instructions (16 bytes) with 20 bits of previously
decoded instruction information (5 bits per instruc-
tion). The precalculated decode information is used in
stage 1 for branch and jump processing and in stage 2
for instruction slotting. 
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S0 S1 S2 S3

READ INSTRUCTION CACHE
BUFFER INSTRUCTIONS, DECODE BRANCHES,
DETERMINE NEXT INSTRUCTION CACHE ADDRESS
SLOT: STEER TO EXECUTION PIPELINE
DETERMINE WHETHER INSTRUCTIONS CAN ISSUE
READ INTEGER REGISTER FILE

S4 S5 S6

FIRST INTEGER PIPELINE STAGE
SECOND INTEGER PIPELINE STAGE
WRITE INTEGER REGISTER FILE 

S4 S5 S6

READ FLOATING-POINT REGISTER FILE
FIRST FLOATING-POINT PIPELINE STAGE
LAST FLOATING-POINT OPERATE STAGE,
WRITE FLOATING-POINT REGISTER FILE

S7 S8

INTEGER PIPELINE

S4 S5 S6

CALCULATE VIRTUAL ADDRESS, BEGIN DATA CACHE READ
END DATA CACHE READ, TRANSLATE VIRTUAL ADDRESS IN DTB

S7 S8 S9 S10 S11 S12

FLOATING-POINT PIPELINE

MEMORY ACCESS PIPELINE

USE DATA CACHE DATA, WRITE STORE
DATA TO DATA CACHE, BEGIN

SECOND-LEVEL CACHE TAG ACCESS
END SECOND-LEVEL CACHE TAG ACCESS

BEGIN SECOND-LEVEL CACHE DATA ACCESS
END SECOND-LEVEL CACHE DATA ACCESS

BEGIN DATA CACHE FILL
END DATA CACHE FILL

USE SECOND-LEVEL CACHE DATA

Figure 2
Alpha 21164 Pipeline Stages



In stage 1, the four-instruction block is copied into
one entry of the two-entry instruction buffer (IB).
Also in stage 1, the instruction cache and ITB each
check for hits, and the branch-and-jump prediction
logic determines new fetch addresses. 

The main function of stage 2 is steering each
instruction to an appropriate function unit. This
process, called instruction slotting, resolves all static
execution conflicts. The instruction slotter accepts the
next four-instruction block from the IB into a staging
register at the beginning of stage 2 and routes the indi-
vidual instructions to the appropriate functional
pipelines as it advances them to stage 3. If the block
contains certain mixes of instruction types, it is able to
slot all four instructions in a single cycle. Otherwise, it
advances as many instructions as possible in the first
cycle. The remaining instructions in the block are slot-
ted during subsequent cycles. Instructions are slotted
strictly in program order. A new four-instruction block
enters stage 2 when every instruction in the prior
block has been slotted and advanced to stage 3. 

The issue stage operates in stage 3. It performs all
dynamic conflict checks on the set of instructions
advanced from stage 2. The issue stage contains a com-
plex register scoreboard to check for read-after-write
and write-after-write register conflicts. This stage also
detects function-unit-busy conflicts, which can occur
because the integer multiplier and floating-point divider
are not fully pipelined. The register scoreboard logic
detects all integer and floating-point operand bypass
cases and sends the necessary bypass control signals. 

The issue stage issues instructions to the appropriate
function units unless it encounters a dynamic conflict.
If a conflict occurs, the instruction and logically subse-
quent instructions are stalled (not issued). A stall in
stage 3 also stalls the advance of the next set of slotted
instructions from stage 2. This stall ends when all
instructions in stage 3 have been issued. 

To perform conflict checking and to handle excep-
tions (including traps and interrupts), the instruction
unit tracks the instructions issued during stage 4
through stage 8. The instruction unit sends register
file write strobes and addresses to the integer and
floating-point register files for instructions that reach
the retire point (stage 6) without an exception. In the
event of an exception, write strobes are withheld
(gated) to prevent incomplete instructions from
updating the register file. These instructions do not
complete either because they caused an exception or
because they are in the “shadow” of an exception. The
shadow of an exception includes all instructions that
are in the pipeline when an exception is recognized
but are logically subsequent to the instruction taking
the exception. 

The issue stage stalls for a single cycle to permit the
integer multiplier or floating-point divider to return 
a result into its associated pipeline. This is necessary

because the register files do not have extra write ports
dedicated to receiving these results. The issue stage
also stalls for one cycle in similar cases to permit data
fills for load instructions that missed in the data cache
to write to the register file and data cache. The issue
stage stalls indefinitely when necessary to execute the
trap barrier and memory barrier instructions. 

No-op Instructions 
New instructions are shifted into the slotting and issue
stages when a given stage becomes completely empty.
Compared to an ideal design in which instructions are
shifted to fill a given stage partially, this design has a
slightly increased average cycles-per-instruction ratio.
We considered the alternative in which instructions are
shifted in as slots become available. This alternative
would have created critical paths that would increase
the CPU cycle time by approximately 10 percent. An
evaluation of our trace-driven performance model
showed that the alternative did not reduce the cycles-
per-instruction ratio enough to compensate for the
reduction in cycle time. As a result, we chose the sim-
pler and faster design. 

Compilers and assembly language programmers can
insert no-op instructions to minimize and, in most
cases, to eliminate any negative performance effect. To
facilitate this process, the Alpha 21164 microprocessor
handles three different kinds of no-op instruction. 

The first two kinds of no-op instruction are the
integer no-op (NOP) and the floating-point 
no-op (FNOP). NOP (BIS R31,R31,R31) can issue 
in either integer execution pipeline. FNOP (CPYS
F31,F31,F31) can issue in either floating-point execu-
tion pipeline. The compiler uses these to improve per-
formance when two instructions would be slotted
together even though they cannot issue in the same
cycle. If one instruction in a pair is dependent on the
other, issuing them together guarantees the second
will stall in the issue stage and prevent later instruc-
tions from entering that stage. The compiler inserts a
NOP or FNOP to delay the issue of the second instruc-
tion. With this improvement, the second instruction
can be issued with later instructions. 

The third kind of no-op instruction, the universal
no-op (UNOP), is detected in stage 2. UNOP
[LDQ_U R31,0(Rnn)] is discarded in stage 2 so that
it does not require an issue slot in either pipeline.
UNOP allows compilers to align instructions without
the unnecessary use of pipeline issue slots. For exam-
ple, the compiler can align the target of a branch with-
out necessarily slowing execution of the fall-through
path to that branch. 

Instruction Prefetcher and Refill Buffer 
The instruction prefetcher operates in parallel with the
instruction cache. When an instruction is not in either
the instruction cache or refill buffer, the prefetcher
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generates a stream of 32-byte instruction block fetch
requests to fill the 4-entry refill buffer with instruction
data. Each instruction block contains 8 instructions.
Fetched instruction data is stored in the refill buffer
when it is returned. Four-instruction subblocks of
instruction data are moved from the refill buffer to the
IB when needed. At that time, the instruction cache is
also updated. If this data movement empties an entry
in the refill buffer, an additional fetch request is initi-
ated. Fetched instruction data is buffered in the refill
buffer rather than the instruction cache to avoid evict-
ing valid cache blocks unnecessarily. 

The refill buffer is a type of stream buffer. Each
entry stores a virtual address and has a comparator so
the refill buffer can be probed for instruction data on 
a cache miss. Instruction fetching begins only if an
access misses in both the instruction cache and the
refill buffer. Fetching stops when any instruction flow
change occurs (i.e., branch, jump, exception, etc.). It
also stops if at any time the instructions needed in
stage 1 are found in the instruction cache. 

The combination of the on-chip, 96-KB second-
level cache and the instruction prefetcher significantly
reduces the benefit of enlarging the instruction cache
beyond its current size of 8 KB. The prefetcher gener-
ates requests at a high rate. Because it is on-chip, the
second-level cache has the bandwidth to handle
requests quickly and with relatively little effect on
data-stream requests. In general, the performance
benefit from making the instruction cache larger is
very small. This is one of the benefits of the two-level
on-chip cache hierarchy. 

Instruction Stream Address Translation and the
Instruction Translation Buffer 
The instruction unit contains a 48-entry, fully associa-
tive instruction translation buffer (ITB) that holds
instruction stream address translations and protection
information. Each entry in the ITB can map 1, 8, 64,
or 512 contiguous 8-KB pages. 

During stage 1, the ITB entries are checked for 
a match with the program counter (PC). If the page is
found, its protection bits are checked against the cur-
rent operating mode. If the page is not found, an ITB
miss trap occurs. If the page is found in the ITB and
the access is an instruction cache miss, the ITB supplies
the physical page address to the prefetcher. 

Branch and Jump Prediction 
The branch prediction logic examines the block of
instructions coming from the instruction cache or
refill buffer during stage 1. It checks the block for con-
trol instructions (taken conditional branches, jumps,
subroutine return instructions, and other flow-change
instructions) and calculates the new fetch address.
Since the new fetch address is available at the end of
stage 1, the read of the instruction cache for the target

instruction occurs in the next cycle. This means the
control instruction is in stage 2 at the same time as the
target instruction is in stage 0, resulting in a one-cycle
branch delay that creates an empty cycle in the
pipeline. The IB quashes this empty cycle if any stall
occurs ahead of it in the pipeline. 

The branch prediction logic predicts conditional
branch instructions using a branch history table with
2K entries addressed by low-order bits of the PC. Each
is a two-bit counter that increments when branches are
taken and decrements when branches are not taken.
The counter saturates at the top and bottom counts. 
A branch is predicted to be taken if the current
counter value is one of the two highest counts; other-
wise, it is predicted to be not-taken. This method is
more effective than the method used in the first Alpha
microprocessor (which had only one bit of history per
entry), partly because it reduces the misprediction rate
for typical loop branches by half. 

A 12-entry return address stack is used to predict
the target address on subroutine returns (i.e., RET,
JSR_COROUTINE) and returns from PALcode. Each
entry stores 11 bits of address, which is sufficient to
address the 8-KB instruction cache. The upper 32 bits
of the target address are predicted by using the value in
the instruction cache tag that is addressed by the
return address stack. The same basic mechanism is
used to predict the full target address of jump and
jump-type subroutine call instructions since the Alpha
architecture provides a hint field in these instructions
that indicates the target cache address. 

The Alpha 21164 microprocessor recovers from
incorrect branch and PC predictions by taking a mis-
predict trap when the incorrectly predicted branch or
jump-type instruction executes in the execution unit.
For a typical branch misprediction, the execution time
is five cycles longer. 

Replay Traps 
In a replay trap, the instruction unit prevents comple-
tion of a given instruction by trapping the instruction
and then restarting execution immediately with that
instruction. The trap mechanism prevents completion
of subsequent instructions. This mechanism replays
the instruction from the beginning of the Alpha
21164 pipeline. It is used when a stall after stage 3
would otherwise be required. 

There are three main reasons stalls are not imple-
mented for stages later than stage 3. The ability to stall
adds complexity to clocking circuits, particularly in
execution unit data paths. In addition, it adds control
complexity. An example of this is a stalled two-input
function unit in which one input operand is invalid. To
end the stall, certain latches must be enabled while
others are not, because the valid data must be held in
one pipeline latch while the invalid data is replaced 
in another. Finally, adding stall logic would create
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additional critical paths. The elimination of stalls
beyond stage 3 and the use of the replay trap mecha-
nism avoid these complexities. 

The replay trap mechanism is used for a number of
unusual memory instruction conflicts and memory
unit resource overruns. For example, the load-miss-
and-use replay trap is used when a load misses in the
data cache and a dependent instruction issues exactly
two cycles after the load. The issue decision for such 
a dependent instruction is made prior to the actual
determination of cache hit, so a hit is predicted. If 
this prediction is wrong, the dependent instruction is
restarted from the front of the pipeline and will arrive
at the issue stage one cycle before data arrives from the
second-level cache. Because the instruction arrives
before the data, there is no performance loss due to
the trap mechanism. 

Integer Function Unit

The integer function unit executes integer operate
instructions, calculates virtual addresses for all load
and store instructions, and executes all control instruc-
tions except floating-point conditional branches. It
includes the register file and several integer functional
subunits, most of which are contained in two parallel
four-stage pipelines. Both pipelines contain an adder
and a Boolean logic unit. The first pipeline contains
the shifter, and the second pipeline contains the con-
trol instruction execution unit. The first pipeline also
attaches to the partially pipelined integer multiplier,
which operates in the background. Except for the issue
cycle and a cycle to return the result, the first pipeline
and integer multiplier operate in parallel. 

Integer Register File and Bypasses 
The integer register file is read during stage 3 and writ-
ten in stage 6. Bypass paths are implemented to allow
all subunits other than the multiplier to receive and use
the result of a previous instruction from stage 4, 5, or 6
of either pipeline. Due to implementation constraints,
the multiplier can only receive bypassed data from stage
6 of the pipeline. This increases multiply latency by as
many as two cycles when multiply input operands are
produced by preceding integer operate instructions. 

The integer register file contains 40 registers: the 32
integer registers specified by the architecture (R0
through R31) with R31 always reading as 0; and 8
shadow registers available to PALcode as scratch space.
The register file is accessed by 4 read ports (2 for each
pipeline) and 2 write ports (1 for each pipeline). 

Instruction Latencies 
Most instructions executed in the integer function
unit have a latency of 1 cycle. These instructions exe-
cute in stage 4. The conditional move instruction has 
a latency of 2 cycles. It executes in stage 4 and stage 5. 

Multiply latency depends on the data size and the
operation being performed. Thirty-two–bit multiplies
have an 8-cycle latency, and the multiplier can start 
a second multiply after 4 cycles, provided that the
second multiply has no data dependency on the first.
Sixty-four–bit signed multiplies have a 12-cycle
latency; the 64-bit multiply unsigned high instruction
has a 14-cycle latency; and for both of these 64-bit
multiplies, the multiplier can start a nondependent
multiply after 8 cycles. 

Because of a special bypass, compare and Boolean
logic instructions can have a latency of 0 cycles when 
a conditional move or a branch test input operand is
the result of an immediately preceding compare or
Boolean logic instruction. The integer unit uses the
bypass to allow dual issue of the producer and con-
sumer in this case. 

To realize the full benefit from the increased issue
width relative to the first Alpha microprocessor, the
DECchip 21064, it is critical to reduce operational
latencies. As the issue width increases, the cost in
instruction execution opportunities for a given latency
increases. In the integer unit, the following latencies
are reduced relative to the 21064: the shifter latency
(from 2 cycles to 1), the byte and word operation
latencies (from 2 cycles to 1), and the multiplier
latency (from 19 to 23 cycles in the 21064 to 8 to 16
cycles in the Alpha 21164). Also the special bypass 
for conditional instructions reduces that latency from
1 cycle in the 21064 to 0 cycles in the Alpha 21164.
For the most part, these latency reductions are
achieved by circuit design improvements. 

Integer Load and Store Instructions 
Integer load instructions issue in either pipeline and as
many as two can issue per cycle. Integer store instruc-
tions issue in the first pipeline only. For integer load
instructions that hit in the data cache, the data is mul-
tiplexed into the output of stage 5 of the pipeline in
which the load issued; the data is then written to the
register file through the write port associated with that
pipeline. For integer load instructions that miss in the
data cache, the data is returned later by the memory
subsystem. The data is then multiplexed into the out-
put of stage 5 as before, and the instruction unit
inserts a properly timed NOP cycle by stalling the issue
stage for one cycle to make the pipeline’s register write
port available. 

Floating-point Unit

The floating-point unit consists of the floating-point
register file and two pipelined functional subunits: an
add pipeline that executes all floating-point instruc-
tions except for multiply, and a multiply pipeline that
executes floating-point multiplies. All IEEE and VAX
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rounding modes are done in hardware, including
IEEE round to plus and minus infinity. 

Pipeline Structure and Operation Latencies 
Each floating-point subunit on the Alpha 21164 CPU
chip contains three functional stages implemented in
four pipeline stages, stage 5 through stage 8. The
floating-point register file is read in stage 4 and written
at the end of stage 8. Figure 3 depicts the physical lay-
out of the floating-point unit. Figure 4 shows the
pipelining of instructions executed in the floating-
point unit. 

As in the integer unit, latency is reduced in the 
floating-point unit relative to the previous Alpha
implementation. The latency of all floating-point
operate instructions, except floating-point divide, is 4
cycles. In the DECchip 21064, most floating-point
operations take 6 cycles. The floating-point divide
latency varies depending on the input data values. For
a single-precision divide, the latency is reduced from
34 cycles in the 21064 to an average of 19 in the
21164; and for a double-precision divide, it is reduced
from 63 cycles to an average of 31. As discussed previ-
ously, reducing latency is important as issue width
increases. As in the integer unit, the reduced latency is
achieved mostly by circuit design improvements. 

Register File and Bypasses 
The floating-point register file has nine ports: two read
ports and one write port per functional unit for source
and destination operand accesses, one read port for
floating-point stores, and two write ports to support
two floating-point loads per cycle. Bypass paths forward
data from each of the four write buses in the floating-
point register file to each of the five read buses. 

Floating-point Load and Store Instructions 
In Alpha microprocessors, floating-point numbers are
stored in one format in memory and in another format
in the floating-point registers. Floating-point load and
store instructions convert from one format to the
other as they move the data. In the Alpha 21164
pipeline, floating-point input operands are read from
the floating-point register file one cycle later than inte-
ger input operands are read from the integer register
file. This skew provides an extra cycle for floating-
point load data format conversion. 

Floating-point load and store instructions first issue
to the integer unit for address calculation. The issue
restrictions are exactly the same as for integer load or
store instructions. For floating-point load instructions,
the data is written to the register file using one of the
two write ports reserved for that purpose. When a con-
flict for these write ports occurs between a write due to
a new load that hit in the data cache and a write due 
to a previous load that missed, the conflict is resolved
by forcing the new load to miss in the data cache. 

Add Pipeline 
The key components of the add pipeline design are the
fast fraction adder, operand data-path alignment, nor-
malization shift detection, sticky-bit calculation, and
round-adder design. The fast-adder design operates in
a single phase (one phase equals one-half of a CPU
cycle). It is used in the function stage 1 and stage 3
fraction adders. To reduce formatting and rounding
complexity, the least significant bits in fractions are
aligned to one of two different bit positions: one for
single-precision data (IEEE S and VAX F) and 4-byte
integers, and one for double-precision data (IEEE T,
and VAX G and D) and 8-byte integers. 

For effective subtracts with exponent differences of
21, 0, or 1, a new normalization shift detect algo-
rithm uses three leading bit chains to examine stage 1
input operands to determine the required normaliza-
tion shift. The normalization shift amount is chosen
by comparing the least significant bit of one exponent
to the least significant bit of the other. 

The sticky bit for adds and subtracts is determined
by comparing the exponent difference with an encoded
value for the number of trailing zeros in the fraction
being aligned. 

The stage 3 round adder operates in one cycle and
consists of a fraction adder and an output selector. The
fraction adder takes one phase and adds two operands
plus rounding bits based on the round mode. The
selector assembles the fraction result based on global
carry-and-propagate information from the adder. It
also examines the adder result alignment and performs
a final normalization shift of as much as one bit left or
right. The exponent result is also selected in stage 3
before the complete result is sent to the register file
write bus and bypass logic. 
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Multiply Pipeline 
Multiplication is done using radix-eight Booth encod-
ing, which requires 18 partial products to be summed.3
The first stage of the multiply pipeline is used to create
three times the multiplicand and to determine the
Booth encodings. The multiplier array is composed 
of 14 rows of carry-save adders that perform the addi-
tion of multiplicands. The carry and sum outputs of
the array are reduced by combining carry-save adders
and then are passed through a half adder to facilitate
rounding. 

The sticky bit for multiplication is determined by
summing the number of trailing zeros in both
operands. The carry output from the less significant
product bits is used by the round selector of the multi-
ply pipeline to determine the correct final product. 

Divider 
Floating-point divide instructions issue into the add
pipeline. The operands are immediately passed to the
divider. Instruction issue to the add pipeline continues
while a divide is in progress until the result is ready. At
that point, the issue stage in the instruction unit stalls
one cycle to allow the quotient to be sent to the round
adder and then be written into the register file. 

The divider uses a normalizing nonrestoring algo-
rithm that determines 1 to 4 bits of quotient per cycle,
averaging 2.4 quotient bits per cycle.4 Implementation
of this algorithm requires that an exact partial remain-
der be produced every cycle. The implementation uses
a fast adder that produces its result in half of a cycle. 

Memory Unit

The memory unit contains a fully associative, 64-entry,
data translation buffer (DTB); an 8-KB, direct-
mapped, primary data cache; a structure called the miss
address file (MAF); and a write buffer. It processes load,
store, and memory barrier instructions. 

The write-through data cache has 32-byte blocks
and 2 read ports. Its tags hold physical address data. 

The memory unit receives as many as 2 virtual
addresses from the integer unit each cycle. Because it
has 2 read ports, the DTB can translate both virtual
addresses to physical addresses and detect memory
management faults. (Like the ITB, each entry in the
DTB can map 1, 8, 64, or 512 contiguous 8-KB pages.) 

Load instructions access the data cache and return
data to the register file if there is a hit. The latency for
loads that hit in the data cache is two cycles. Again,
latency is reduced relative to the DECchip 21064
microprocessor where the latency is three cycles for
loads that hit. The reduced latency was achieved by
circuit design improvements. Reducing this latency is
particularly important as issue width increases because
of the frequent use of loads in programs. 

For loads that miss, the physical addresses are sent
to the MAF, where they wait to be sent to the C-box.
Store instructions write the data cache if there is a hit;
they are always placed in the write buffer, where they
wait to be sent to the C-box. 

Memory Unit Pipeline Structure 
Virtual address calculation begins in the integer unit
early in stage 4. The data cache access begins later in
stage 4 and completes early in stage 5. Address trans-
lation is done in parallel with data cache access. Data
cache hit is determined late in stage 5. If the access
hits, the data is written to the register file (for a load
access) or the cache (for a store access) in stage 6. In
the case of a data cache miss, the memory access
advances to pipeline stages in the C-box. 

Miss Address File 
The MAF consists of two sections that store data. The
first section holds load misses (called DREADs) in six
entries, and the other section holds instruction fetch
addresses (called IREFs) in four entries. For DREADs,
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the MAF stores the physical address, destination regis-
ter, and instruction type (integer/floating-point, 
4-byte/8-byte/IEEE-S-Type/VAX-G-Type, etc.). For
IREFs, the MAF stores only the physical address. 

Buffered accesses in the MAF and write buffer are
sent to the C-box at a peak rate of one every other
cycle. DREADs have highest priority, writes have the
next highest priority, and IREFs have lowest priority. 

When the C-box returns data for a DREAD, the
memory unit provides the destination register and
instruction type information from the MAF. This
information is then used to convert the data to its 
in-register format, to determine which registers to
write, and to update the register scoreboard in the
instruction unit. The DREAD entry is removed from
the MAF when the second half of the data fill arrives. 

The C-box returns IREF data directly to the
instruction unit’s cache and refill buffer. The IREF
entry is removed from the MAF as soon as the com-
mand has been accepted by the C-box. 

Merging Capability One key performance feature of
the MAF is that it merges multiple load misses that
access the same 32-byte block of memory into a single
C-box DREAD request. One load instruction requests
at most 8 bytes of a 32-byte memory block. As many
as 4 load misses can be merged into 1 DREAD request.
This improves latency and reduces unnecessary band-
width consumption in the second-level cache. 

To implement merging, the MAF merge logic
detects any load miss address to a block that has already
been queued in the DREAD section of the MAF. The
logic then adds the new destination register to the
existing request. Merging is limited to 1 load miss per
naturally aligned 8-byte portion of the 32-byte block.
Also, merging is permitted only for load misses with
identical instruction types. The memory unit allocates 
a new DREAD entry in the MAF only for load misses
that do not merge. The merge logic supports the peak
load instruction issue rate. It can merge as many as 
2 load misses per cycle into the DREAD section and
can merge loads that issue together. 

The MAF merge capability is an integral part of the
two-level cache hierarchy design. It can reduce the rate
of memory read operations from two loads per cycle in
the integer pipelines to one read every other cycle 
in the second-level cache pipeline. By doing so, the
MAF makes the full bandwidth of the second-level
cache available to the program. 

The MAF can hold as many as 6 DREADs that can
represent as many as 21 loads. (The theoretical maxi-
mum is 24 loads; this limit is a by-product of the over-
flow prevention algorithm.) Requests are sent to the
C-box in the order in which they were allocated in 
the MAF. Accesses in the second-level cache can 
hit underneath (behind) second-level cache misses,

allowing data fills to be returned in a different order
than they were sent to the C-box. 

Two-level Data Cache Many workloads benefit more
from a reduced latency in the data cache than from 
a large data cache. We considered a single-level design
for a large data cache. For circuit reasons, physically
large caches are slower than small caches. To achieve a
reduced latency, we chose a fast primary cache backed
by a large second-level cache. As a result, the effective
latency of reads is better in the Alpha 21164 CPU chip
than it would have been in a single-level design. 

The two-level data cache has other benefits. The
two-level design makes it reasonable to implement set
associativity in the second-level cache. Set associativity
enables power reduction by making data set access
conditional on a hit in that set. The two-level design
also allows the second-level cache to hold instructions,
which makes a larger instruction cache unnecessary. 

In addition, the two-level design was simpler.
Because performance studies showed that the Alpha
21164 CPU chip should have write-back caching on-
chip, the data cache in the single-level design would
have been write-back. Also, because of its larger size, it
would have been virtually addressed, which would
have required a solution to the synonym problem.
Finally, it would have been difficult to make the single
large cache set-associative without adding latency. The
two-level design eliminated all these issues. 

Write Buffer 
The write buffer contains 6 entries; each entry holds as
many as 32 bytes of data and one physical address. 
It accumulates store instructions written to the same
32-byte block by merging them into 1 entry. It can
merge 1 store instruction per cycle, matching the peak
store instruction issue rate. The write buffer places 
no restrictions on merging until a write is sent to the
second-level cache. At that time, the write buffer stops
merging to that entry. 

Once an entry from the write buffer has been sent
to the C-box, several steps may be required to com-
plete the write, depending on the presence of the
memory block in the second-level cache and its cache
coherence state. The C-box signals the memory unit
upon completion of a store operation, and then the
memory unit removes the corresponding entry from
the write buffer. 

Access Ordering 
The memory unit guarantees that all memory accesses
to the same address are processed in the order given by
the instruction stream. This is a design problem in any
nonblocking memory subsystem design. Load misses
that conflict with a store, and stores that conflict with
a load miss, set conflict bits that prevent the issue of
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the DREAD or write until all conflicts have been
cleared. If a store matches a valid entry in the write
buffer and cannot merge with that entry, it is allocated
a new entry that is prevented from being sent to the 
C-box until the earlier write is completed. 

Memory Barrier Instructions 
The memory unit implements the memory barrier
(MB) instruction by retiring all previous load misses
and writes before sending the MB to the bus interface
unit. The instruction unit stalls new memory instruc-
tions until the MB has been completed. 

The memory unit implements the write memory
barrier (WMB) instruction as follows: When the WMB
is executed, the memory unit marks the last write that
is pending at that time. Writes added after that time
are added behind the WMB mark. They are not sent 
to the C-box until all writes ahead of the WMB mark
are completed. Unlike the MB instruction, execution
of the WMB instruction does not require any stalls in
the instruction unit. 

Replay Traps in the Memory Unit 
The memory unit forces a replay trap if a new load or
write would cause the buffer to overflow. It also forces
a replay trap when a store that hits in the data cache 
is followed by a load to exactly the same location in 

the next cycle. In this case, because the store writes the
data cache in stage 6, the data from the store would
not yet be available to the load. 

Cache Control and Bus Interface Unit

The cache control and bus interface unit or C-box
contains the second-level cache and the following sub-
units: the second-level cache arbiter unit (SAU), the
bus interface unit sequencer (BSQ), the victim address
file (VAF), the bus interface unit address file (BAF), 
the write buffer unit (WBU), and the system probe
arbiter (SPA). Figure 5 shows the functional units of
the C-box. 

The C-box provides the interface to the system for
access to memory and I/O. It provides full support for
multiprocessor systems using a cache coherence pro-
tocol (described later in this section). It manages the
second-level cache and an optional off-chip third-level
cache, both of which are multiprocessor-coherent
write-back caches. 

The SAU arbitrates the requests for access to the
second-level cache. The BSQ requests to write data fill
(due to previous second-level cache misses). The VAF
requests read accesses of deallocated second-level
cache blocks that have been modified (called victims).
The SPA requests access for external cache coherence
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transactions. The memory unit requests access for
DREAD, IREF, and write requests. Highest priority is
given to the BSQ, followed by the VAF, and then the
SPA; lowest priority is given to the memory unit. 

The BSQ controls data movement to and from the
Alpha 21164 microprocessor. It accesses the optional
off-chip third-level cache. It communicates with the
system to request data that is not cached, to write back
deallocated cache blocks that have been modified, 
to carry out coherence transactions, and to perform
I/O accesses. 

The VAF reads and holds victims from the second-
level cache and data for memory broadcast writes, I/O
writes, and external cache coherence commands that
require data from the second-level cache. It has two
entries for victims, each of which holds the address and
data for a victim. These victims are written back to
third-level cache or memory when the BSQ is idle 
or sooner if necessary to maintain cache coherence.
These entries also hold data for memory broadcast
writes and I/O writes. A separate buffer holds data for
external cache coherence commands that require data
from the second-level cache. 

The WBU handles second-level cache writes and
cooperates with other C-box subunits to maintain
cache coherence. 

The SPA receives cache coherence requests from the
external system environment. To fulfill these coher-
ence requests, it accesses the second-level cache and, if
the off-chip cache is present, cooperates with the BSQ
to access the off-chip cache. It then sends an appropri-
ate response to the external system. 

Second-level Cache and Optional Off-chip Cache 
The C-box manages the on-chip second-level cache
and the optional off-chip cache. Both are write-back,
and both are mixed instruction and data caches. If it 
is present, the off-chip cache is a third-level cache. The
second-level cache is 96 KB in size and is 3-way 
set-associative. The off-chip cache is direct-mapped
and can be configured to sizes ranging from 1 mega-
byte (MB) to 64 MB. The off-chip cache is not set-
associative because it is not feasible given pin-count
constraints. The tags in both caches hold physical
address data and coherence state bits for each block. 

The block size for the off-chip cache is configurable
to 32 bytes or 64 bytes. The second-level cache has 
1 tag per 64-byte block. It can be configured to oper-
ate with 64-byte blocks or with 32-byte subblocks. 

The second-level cache tags contain bits to record
which 16-byte data words within the block or sub-
block have been modified since the block was brought
on-chip. When a block or subblock is copied back to
the off-chip cache, only modified 16-byte data words
are transferred. This reduces the time required to write
back second-level cache victims in many cases. 

Transaction Handling 
A maximum of 2 second-level cache misses can be
queued in the BAF for external access in the off-chip
cache and memory. The BAF merges read requests to
32-byte blocks within the same 64-byte block. 

For simplicity, only one operation to a given 
second-level cache address is allowed in the BAF at 
a time, except when the two requests merge. A new
request with a second-level cache address that matches
an existing request in the BAF is aborted. Similarly,
requests that require VAF entries when the VAF is full
are aborted, and new requests are aborted when the
BAF is full. If a request is aborted, the memory unit
retries the request repeatedly until it is accepted.
Accesses to second-level blocks that are partially valid
because they are being filled are aborted repeatedly
until the data fill completes. 

Maintaining Cache Coherence 
The Alpha 21164 CPU chip uses a cache coherence
protocol implemented in hardware to provide full sup-
port for multiprocessor systems. The instruction cache
is virtual and is not kept coherent by the hardware.
(The Alpha architecture requires software to manage
instruction cache coherence.) The data cache is a sub-
set of the second-level cache. If the off-chip cache is
present, then the second-level cache is a subset of the
off-chip cache. 

Three state bits record the coherence state of each
block or subblock in the second-level cache and the
off-chip cache: the valid bit, the shared bit, and 
the dirty bit. The valid bit indicates that the block con-
tains valid data. The shared bit indicates that the block
may be cached in more than one CPU’s cache. The
dirty bit indicates that the memory copy of the block 
is not correct and the cache block must eventually 
be written back. These state bits allow the follow-
ing states to be encoded for a given cache block or
subblock: invalid, exclusive-unmodified, exclusive-
modified, shared-unmodified, and shared-modified. 

The system bus interface is the coherence reference
point in the system. Any request to modify the state of
a block is arbitrated at this bus before the block is
changed. For example, when the Alpha 21164 CPU
chip must write to a block in the second-level cache
that is in the exclusive-unmodified state, the BSQ
sends a request to the system to change the state of the
block to the exclusive-modified state. The C-box waits
for the system to acknowledge the request, and then
retries the write. If another processor reads the same
block before the request is acknowledged, the block 
is instead changed to the shared-unmodified state. In
that situation, the Alpha 21164 CPU chip subse-
quently sends a full-block memory write on the system
bus that causes all other processors to invalidate their
copy of the block and leaves the block in the exclusive-
unmodified state in this processor. 
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Second-level Cache Transaction Flows 
DREADs, IREFs, and writes from the memory unit
access the second-level cache after winning arbitration
in the memory unit and the SAU. The second-level
cache is fully pipelined. Figure 6 shows an example of 
a read that is followed by a write as both hit in the cache. 

For the read access shown in Figure 6, the pipeline
stages are the following. The SAU arbitrates in stage 5;
the second-level cache tag store is read in stage 6; the
hit is determined in stage 7; and the requested data is
read from the cache data store in stage 8 and sent on
the 128-bit-wide read data bus (R-bus) in stage 9. The
second half of the 32-byte block is read and sent in the
next pipeline cycle. The R-bus data is received by the
integer unit, the floating-point unit, or the instruction
unit, depending on the access type. 

For data returned to the integer unit or the floating-
point unit, the data cache fill begins in stage 10 and
completes in stage 11. The register file write occurs in
stage 11. An instruction that is dependent on the load
can begin execution in the next cycle. In this case, the
load latency is eight cycles. 

For the write access shown in Figure 6, the pipeline
stages are the following. The SAU arbitrates in stage 5;
the tag store is read in stage 6; the hit is determined,
and data is sent on the 128-bit write data bus (W-bus)
in stage 7; and the cache is written in stage 8. As
before, the second half of the 32-byte write occurs in
the next pipeline cycle. 

A second-level cache miss that results in a victim
provides an interesting case for discussion. Here, we
must determine which set to fill and then remove the
victim before data can be returned from the off-chip
cache. Figure 7 shows an example of a DREAD that
misses in the second-level cache, creating a victim, and
then hits in the off-chip cache. The example shown is
the fastest possible. In this case, the BSQ is idle so the
BAF is bypassed and the address is sent immediately to
the off-chip cache. The access time for the off-chip
cache is four CPU cycles. 

As shown in Figure 7, the DREAD wins arbitration
in stage 5, and the miss is detected in stage 7. The set
picked by the random replacement algorithm contains
modified data (a victim). Since the block size in the
second-level cache is 64 bytes, two 32-byte victim read
sequences are needed to copy the entire victim into
the on-chip victim buffer. The two victim reads arbi-
trate at high priority to ensure that the victim is copied

before the data fills from the off-chip cache overwrite
the locations. 

The Alpha 21164 CPU chip begins sending the off-
chip cache address in stage 8 (because of BAF bypass,
as described above). The tag and data are clocked into
the Alpha 21164 chip at the beginning of stage 12.
The BSQ arbitrates speculatively for a single cycle on
the second-level cache pipeline to reserve a cycle on
the R-bus. That cycle is used to send the data from the
off-chip cache to the execution units and data cache. 

If the access hits in the off-chip cache, the BSQ arbi-
trates to fill the second-level cache. The fill transaction
takes a single cycle in the pipeline to write the tag store
in stage 6 and the data store in stage 8. 

The second victim read sequence occurs after the
first data fill. Because of this, the first victim read
sequence always reads the data location overwritten by
the first data fill. 

PALcode 
The Alpha architecture defines the privileged archi-
tecture library code (PALcode) as a set of software
routines that interface an operating system to a spe-
cific Alpha implementation. PALcode presents the
operating system with an architecturally defined inter-
face that is the same in all implementations even
though the underlying hardware designs can be very
different. PALcode currently exists to interface the
Alpha 21164 microprocessor to the Windows NT,
Digital UNIX (formerly DEC OSF/1), and OpenVMS
operating systems. 

When the processor is executing PALcode, it is in
PAL mode. PAL mode is entered upon execution of
the CALLPAL instruction and upon the occurrence of
interrupts, exceptions, and certain kinds of traps. The
PALcode entry point is a hardware dispatch to a loca-
tion that is determined by the entering event. In PAL
mode, instructions are fetched from physical memory
without address translation. Also, five PAL support
instructions are enabled that give access to all hard-
ware registers and special load/store access to virtual
and physical memory. PAL mode is exited by execut-
ing a PAL instruction called HW_REI. 

To meet performance goals, a number of PAL fea-
tures are included in the Alpha 21164 microprocessor.
For example, the integer register file contains eight
shadow registers that map over R8 through R14 
and R25 in PAL mode. Although this overmapping 
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is normally enabled in PAL mode, it can be disabled
through a hardware control register. This speeds
PALcode entry and exit, because PALcode is free to
use these registers without saving and restoring state.
The shadow register mapping is designed to avoid
overmapping any register used to pass data from the
operating system to PALcode or vice versa. 

Several of the operating systems that run on Alpha
systems access memory management page tables
through virtual memory.5 The Alpha 21164 micro-
processor contains hardware to speed processing of
the PALcode for translation buffer miss. These
PALcode routines access virtually mapped page tables.
The hardware calculates the virtual address of the 
page table entry (PTE) based on the miss address and
the address of the page table base. This eliminates the
instruction sequence required for this calculation.
PALcode then executes a load instruction to this vir-
tual address to fetch the required PTE. This load is
performed using a PAL instruction that signals a vir-
tual PTE fetch. If this load misses in the DTB, a special
PALcode trap routine is dispatched to fill the DTB
using a multilevel, physical-address access method.
After that, the original virtual PTE read is restarted
and will succeed. 

Testability Features

The Alpha 21164 microprocessor incorporates several
testability features. Some enhance chip test, and some
features provide useful module test capability.6

Repairable On-chip RAMs 
The Alpha 21164 microprocessor requires large
random-access memory (RAM) arrays for its on-chip
caches. To improve yield, the instruction and data cache
arrays have spare rows and the second-level cache has
spare rows and spare columns. 

A working instruction cache is necessary for most
chip test programs. Consequently, it is automatically
tested by built-in self-test (BiSt) and automatically
repaired by built-in self-repair (BiSr). During wafer
probe, the test result is serially shifted off-chip for per-
manent repair by laser. Upon chip reset, BiSt of the
instruction cache occurs automatically, but BiSr is not
necessary if the chip has been repaired. 

The data cache and second-level caches are tested by
programs loaded into the instruction cache during
wafer probe. These programs condense the test results
and write them off-chip to be captured by the tester
for subsequent laser repair. 

Chip Logic Testability 
To enhance core logic testability, the Alpha 21164
microprocessor contains dual-mode registers that can
operate as scan registers or as linear feedback shift reg-
isters (LFSRs). The scan mode is used for initialization,
for scanning out signatures, and for debugging. The
LFSR mode is used for manufacturing test. 

Module Manufacturing 
The Alpha 21164 microprocessor implements the
IEEE 1149.1 standard for supporting testing during
module manufacturing. The supported instructions
are EXTEST, SAMPLE/PRELOAD, BYPASS, CLAMP,
and HIGHZ. 

Summary

The internal organization of the Alpha 21164, a new,
high-performance Alpha microprocessor, has been pre-
sented. Mechanisms designed to enhance the CPU’s
performance combined with the CPU’s clock speed 
of 300 MHz produce an extremely high-performance
microprocessor. First silicon of the Alpha 21164 
CPU chip was produced in February 1994, and three
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different operating systems were successfully booted
on the first-pass silicon. The part became commer-
cially available in January 1995. It achieved the perfor-
mance level of 345 SPECint92 and 505 SPECfp92
(estimated), a performance level unmatched by com-
mercially available microprocessors. 
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